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PREFACE

This quarterly progress report is constituted mminly of the
Master thesis submitted by K. R. Cluin. It represents the work done
during the period of February-May 1965. It is a preliminary study
ofthebamhrycmditimatthebubbhmnusingcmeephaof
irreversible thermodynamics.

In this work the fluxes across the bubble wall were assumed to
depend linearly upon the driving forces. This is only a first approxima-
tion, as it is knoim that the relation between the fluxes and the drive
ing forces are non-linear. This assumption leads to an improved set of
boundary conditions which contain as a special case the commonly assumed
boundary conditions of equilibrium acrcas the wall.

In the next phase of the work, a more exact study of the boundary
condition will be made with the goal of determining the non-linear
relations between the flrxes and the driving forces.



ARSTRACT 16717

Growth or collapse of a spherical vapor bubble in 8 sea of one
component inviscid liquid with constant material properties was con-
sidered in the absence of furce fields. Vapor was assumed to be wni-
foom in tempersture. Since mass and heat cross the discontimdty at
the phase boundary, & coupling between heat and mass flux is expected
with the acoompanying discontimuities of temperature and chemical
potential. The present study differs from previous works in the litera-
ture in its comsiderstion of those nem-equilibrium effects with the
techniques of irreveraible thermodyrnamicz and kinetic theory. A new
pair of differential equaticns to be solved simmltemecusly for the
babble rediuvs behavicr was developed. Improvement over previous
works(T211217519) 55 orpected vhen the bubble wall velocity resches
a very high walue in the arder of somic velosity of the llquid as in

Au:"‘\a gl

the final stage of bubdble collapse.



I. INTROIUCTION

The processes in vapor bubble growth and collapse are quite eom-
plex, and mauny simplifications are necessary for smalytieal solutions.
The present study limits itsslf to a cuse vhere the infinite, inviseid,
and one-component liquid surrounds a bubble vhose shape remains spheri-
cal, no body forces are present, and the liguid and vapor properties
such a8 the thermal condustivities (k) specific heats (cp), and the
surfece tension (0) remain emnstant.

Lovd Bayloigh! considered the sisplest case of & vacam void
collapsing in an incowpressible liquid under a constant pressure p
at infinity. The laws of conservation of mass and momentum lod to

the well-known Rayleigh eguation:

2
v, - ¥B) = Fl[x$+§(%) ] ()

vhere the cocxdinate arigin is st the canter of the lubdle, R the
bubble radius, p(n)mmmmn@mnr-x,flm
Hquid density. The surface tension effect on pregsures asross the
curved boundary wes negleeted. (When the void 1is vacuum, p(R) = 0.)
Hext, by equating the wvork done on the system vhen the bubble contracts
Mnmwwuaouxmmmmnemgotmm-
tew, he ocbtained

2 o, B
® 37 -y (2

Bere (p,) can be replaced by p,_ - P(R) as long as p{R) remains econ-
stant. Ifthmummlmmpzimiuthebubblemditthe



ens is nomeondensible cbeying the Boyle's law,

3 oo 3

@ -§RF-v-aftug (3
If 3¢ > p, in (3), the bubble vill expend.

The possidility of high liquid velocity of order of the velooity
otu@mmmunmﬁ-ummmwmmm
mm“'mintbmem:mm&wmmrsn&uym
pressible liguid. msmmauwmmmw
velogity under the same ideslizstions a8 in Reyleigh's solution exsept
the sssumption that the liquid is slightly cosgressibls ;

z 3 5 3 5’(“‘)a

©® -a-Fm {2y ™)
where C is the velosity of somd in liguid at the wall. Woen the liquid
is inccapressible (i.e., J5/3C = 0), (b) retuces to (2). The ecwpari-
aon betwesn (2) and () is shown in Pig. 1. Pig. 2 shows effect of
P, - MR) varying from 0.2 ata up to 3 sta. (P. 15 of Bef. 6).
The divergence between the cospresaible and incompressible theocry
becomes more pronounsed at higher wall velocities as expected. Vhen
incougressible theory prediets Nach muber 1, the ccupressidle theory
pedicts only 0.65. Unfortunately, there was no experimemtal date to
conpure the two theories with vhat really heppens neex the final stage
of collapse.

Later Hickling and Plesset'® considered the effects of non-ccndensi-

blemimidetmmblsm:wassmobsppgu}:uemlﬁ F< 1.h,
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Namarical solutions were presented for the pressure and velooity fields
as function of time in graphs, from the start of collapse to the beginning
of the first rebound.

In all the works thus far diseussed, the asmumption of no mass
flnx at the wvall and scnstant tewpersture throughout the systenm made
the heat transfer considerations unnecessary. In reality, the voild
is neither vacuun nor filled with nom-condonsible gas, dut eontains
the vapor plmse of the same liguid vhich either evaporates or condences
at the dubdble wmll. Expamsion or eonmtraction of the vapor phase is
coupled to the motion of the liquid sea. If the veid ware waouusm, the
velogity at the dubdle wvall wuld spproach infinity monoctarieally as
the bubdble nenrs the complete eollapss. On the other hand, the bubble
vith non-gondensible gas will never completely collspse, but will oseil-
late detween the mmximum and minimem radii indefinitely, unless the
kinetic energy dissipates in the medium by viscosity.

A vepor dubble will spproximte the extremss of vacuum void and
non-gondensible gas buddble under cexriain conditions. Suppose the liquid
has an infinite thermal comductivity. Then, the vepor pressure inside
the dubdbls will remgin eomstant during the collapse due to the prevaile
ing isothermel eondition. This is vhen p(R) in (2) is non-zerc and
constant. Suppose, on the otbar hand, the liquid bas zexo conductivity,
then no condansation or evaporation can take place, and ¢the vapar hubble
will cscillate between two disweters endlessly. Sinece fluids have
finite thermal eonduetivities, the bubble wall temperatwre will inevita-
bly rise wvith a finite rate of condensation. If the temperature rise



5

becomss high enough to induce a vapor pressure higher them p_ , then
the bubbls may Stop collapeing and reverse tha directicn and repest
oselllation toward the complete collapse.

frick and Plesset! solved ths prcblem allowing mass flux at the
bubble vall asousing (a) ccostent densities for both vapor and liquid,
(b)thmmpswhtbm&mmm
to the instantanecus wall tempersture T,, (c) the liguid end vapor
initially at thermal equilibrius with ¥ = 7, (4) ccnstant p,, and
(e) By - B,(8) = §7 . They firet solved'! the energy equation for
the tespersture distribution in the liquid vith the boundary eondi-
tow PnT st ruo ad(k(2D L en, £ Fetr =k Then,

T
the presswre varistion inside the dudbdle p mwmtmottn

hvm-nwcluim-cm‘n:nrem:lm. mm;a
ves substituted into the Rayleig: equatioan. The resulting equation is &
nonlinesr, integro-differentisl equation and was integrated mmexrically
for one set of initial copditions. (The results are reproduced in
7ig. 3.) The comparison with the Raylaigh solution indicates that the
solation with vapor hesting practically coineides with the former exeept
noar the final stage of ccliapse vhere the vspor hoating has a slight
retarding effect on the oollspes. Kot caly the lack of generulity but
&lso the absence of matehing experimental data leaves the solutiom with-
oxt eonfirmation as to the daegree of walidity.

Plesset and Zwick'’}! cbtained mmalytieal solutions to the previ-
ously mentioned integro-differential equation for the case of expandiing

bubdls by subdividirg the pexiod of expansion into several regimes and



by utilizing the simplifications possible in cach regims. For the
asysptotic stage of growth (R > Bo), they derived

Xz, - T,,,)
by 5 B- [ (5)

vhere o is the therml diffusivity of liquid snd T__, the saturstion
temperature corresponding o p, .

Forster and Zuber > formulated vepor bubble growth problems
independently tut along the same vay as Plesset and Zwick did. The
result differed from (5) only by a factor of constant, 1.e..-’§-m
place of [3 in (5). Boen Jakovic P
growth problem totally neglecting the dynamics and asgsuming evapore~
tion across & statiomary interface and arrived at a result which differs
from (5) in thet his result bad fastor 1 in plsce of [3 of (5).

mch earlier solved the xibble

Both groups, Plesset, et al. and Forster, et al., showed satis-
factory comparisons between their theories and Dergarsbedian's experi-
mntﬂdthmmblem.]‘s Thus, the asysptotic growth rats of
the bubble seems to be well established hy eq. (5) snd to be influ-
enced wostly by the hest tremsfer copdition rather then inertial effects
of the liquid.
mmma’ﬁ’a

and their besic approach differed little from those already mentioned.

considered similar vapor growth problems,

In ssmary, Gilmore modified the Rayleigh solution for collapse
of a bubble by alloving & 3light compressibility to exist in the liquid.
HEifekling and Plesset furthsr allowed a non-condensible gas to axist

within the bubble whose pressure is variable. Zwiek and Plasset naglected




the liquid comgressibility but allowed the condensation to take plece
umwuw»smummmmm
to the instantansous bhubble wall tewpersture. The asymptotiec growth
rate of a vapor bubdls as formulated by Flesset and Zwick and Forster
and Zuber seems b0 match well with the experimental date by Dergarededian.

When mass and heat erces discomtimucus phess boundaries, coupling
between heat and mass fluxes is expeated with the accompanying diseon~
timiities of temperature and chemical potential at the dboundary. Since
the plwse boundary is a nop-equilibriun region, the equilidrium rela-
tionships smong the thermodynamie varisdles, such as Clasius-Clapeyron
relation, are only approximations. The higher the fluxes, the less
valid the equilibrium spproximation becomes. Furthermore, the equi-
1ibrium vapor pressure asross a anxved phase boundary 1s different from
the ssturation pressure corresponding to the same temperature at wall.
MMMmfmmmMﬂmmim
account the flux coupling and discontimiities in tempersturs as well
as chemisal potentisl by utilizing the techniques of irreversidble
thermodynamies and kinetie thecry.
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II. OCOIPIED-FION RQUATIONS AT THE FEASE DOUNDARY
II.1 Theywedysmios of Ixrevarsible Processes

For & revarsidle process the second lay stxtes et

S48 =0 (a)
viwre Z48 is the emtropy insrement of all systoms affested by the
prooess. Reversible processes e infinitely slow processes. Proe-
esses vhich cesur &t finits rates are irreversible, and

=@ >0 (2)
for such prooesses Detvosn eguilibrium gtates.

For a singls irreversibls mocess such a8 heat trensfer, & eon-
aaotivity coefficient (tharmal omductivity in case of hest tramsfer)
and the ewrresponding potemtial differense or gradient are sufficient
to detarmine the flow. Whwen two or Eare Lrreversibls processes ocoowr
simltenecusly in the same system, in gensral, they will not be inds-
pendent of one anothar's potential differences, unless they mre of
different tensorial chmraster. In mlk flow of one-compoment liquid
systen, however, the haat tyenkfer is dependent on the tewperature
grodient in the direction of heat flov alone dut indepandent of the
pressure gadisnt in any direction.

Woen irreversible prosesses are prossoding st finite rate, the
quastion arises vhother the usual thermodynexic varisbles and proper-
ties are atill valid. If it is possible to make pubdivisioms of nome
equilibrium regions largs enaugh %o ceutain many maleoules (and hence
o have maercsccpie properties) and yet small enough so that the
gradients within & given portion sre small, then the finally measured




properties sfter & "locAl isclation” are sssigned to the origimal

systen. (300 5%: 39-1) s0rg sy be regions of high grettent vhere

isclation process is not valid, but if the region ecntains negligi-

ble mass, such region ean be trested as & discontimaity. It has been

shom that the validity of assigning thermodymamie varichles vhen

mmmmunmmuwm.(w
let the regicns I and II, each in equilibwrium if isclated, but

not in mctual equilibriom vhen in eommniestion, De comeated through

Fige b. Quasi-gtatic Regicns I end IT Communienting
Through Noneequilibrium Region M

segionm M. An irrgversible rete procese then will degin. The entropy
podustion for the whole system will dbe

a8, + a8 + 43,y > 0.
The change of entropy of a homogeneous part like I or II or of sy
plece in X small encugh to be spproximately homogeneous is glven for
sinples systems dy the Gibhs equation

48 = 74U+ pT AV - Ei./tiz dn, (3)

where 7 is the inverse of tewpsroture; /uithechmmmmial
of coxponont 1.
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For the oalculation of the entropy produstion in @ thim layer of
the acnequilibrium region N over either face of wikich the values of
all intensive properties are uniform, one could suhstitute equilidrium
regions I and II on either sids vithout altering the yrocess in the
inyer, yovided that the equilibrium regions had the same valuss of all
intensive properiies as those al the face of the layer. Then, the
resultant entropy production is gsnerally

8= :1- Jp d?’ (%)

m:,u-mma?’u.ummaammchu
ealled foree. J_ is definsd by

b

:’i-f’ (%)

vhare P denotes the time rate of changs of axy axtensive property of
® quasi-static regicn, aad J, is positive vhen dirested cutd from
that region. If emsh flux is linearly dependant om foroes, each flux
my bé vritten o phencmanclogiesal grounds
= %Ludzd (6)
aJ,_
N Y e 4 a0 ey |
the so-called phencmemclogioal equation for flux J,. The “conductivi-
na"nummmetmermmmmmﬁmw
the intensive state properties. 7The developmant of thermodynamics of
linear irreveraible processes hingsd very mach on ths Onseger recipro-
eal relstica. This prineiple seys that the matrix of cosfficiemte L,
dewmnh(é)uvuehmmeiMdzim

™is statement is



1dentified through epressicn (§) for the rate of entropy yrodusticn
is symmtrical. That is

I&J.Lji (1
.2 &&&&mg;mm&&
Ptese Boundsxy

One ean imagine a tiin spherical shell N of negligible mass whieh
eontaine the vepar-liquid yhede boundary and has uniform intensive
properties ca each sids, $.e., vapor side and the liquid aids; them
substitute gmsi-static rogions I and IY eash of vhish his the same
value of intensive phase properties as those at the face of the shell
and Jas {nfinite condugtivities as shom in Figare 3.

As shown in Figure 5, the disecutimities in tempersture A7 , chemieal
potential Al , and pressure 4 p sre assumsd to exist. In equilivrium,
47 sd Au unbemm,mumbe'gf-mmeu

tare of the bubble vall. When there is large mass flux, 4 p will not
be equal to - S5 but will comtain additional term dus to the mommtum
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change when the vapor hits the liquid surfsce st finite speed. Tms,
if we assume neglicible wpor velocity,
_ ’ 2
4":-%-0'-*% fi‘%’ . (8)
The dlsomntimities 47 and 4/ are sssumed t0 de swall enough to
Justify the usage of the Omsager relation.

Jor region I,

éxﬂzexi-yrelcﬂ'z ;10 (9)
modnﬁm.Tq;mahtm

Uy = by Iy - By (10)

Fer rogion M, the surfeees smas is negligible, and its ensrgy cam only
be changed adiabatieally and reversibly. Theraefore,
gt..o. (1)

Por region II, equations gualogous to (9) snd (10) result:

Gy =t +47 YU+ (p+ap) (T +47 Yoy

- (M +ap ) (X 447 gy, (12)

snd

Upy = Byp By + I gy = (B + 4P) ¥y (33)

In our model, since both regions T and IT are assumed to be uni-
mmm,maqu:mmbemmcmummw
mst be rejestad to immginery reservoirs each at (7) and (7 + 4 )
for mass emtering each region I and IT in order to keep each regiom
at the respestive tomperatures. Iu real fiuld, cinez the fluid has

finite conduetivities, .Tq’s will be tramsferred by ordinary condnetica
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heat, 22X, Since the rate ot which heat is conduoted into the vapor
is wamlly several oxders of magnitude smiller than tiat fer the ligquid,
:ﬁmuwumm:mm:‘. Thus, in an iso~
thermal process (4T =o),:q/inmuhmm-zworm
tion or condensation dapending on the aireetion of the wass finx.

The total entropy produstion is simply the mm of (9), (11), et
(12):

8=zl + (pz) ¥y = (Mz) By (W)

+ (7447 YUy +(p+apN T+ 47 ) Yy = (U +44) z+aT) By

By the conservation of mzass,
~ipedy 8T, . (15)
Introducing (10), (13), and (13) with J , = 0 ixto (W),
é“("‘x"n*”u‘n“q)"
+ byy JoaT - (uaz +zap )J“thac (16)
The first term on the right sida of (16) beecmss zerc by the first law

arplied to a comtrol volume surrounding the open region M. The second
and the third thorms can be simplified using the definitimii = h - 8/ .

by Jpaz = (uar + 274 )3y
amiet - o~ Brer + < [ageee B} 4
-Jn[%dz =74 hZJ + T gu 4(%)+ A'n]

= J, Uledhyy + A8y,/7) = =3, T(4u), (a7)



Beve, "4 " hms been wsod 88 the diffexential "d." Finally, ve have
BaJ st -3, T(4Y), (18)

(4/4), means the chemical posential difference evalusted at the single
tewperature 7 prevailing in the vapor region; theb 18, 18 (/i3 = /()
Llgy 18 8180 evaluted ab 7 zether than &3 (7 + 47 ). Rurther inter-
pretation follows in IT.h.

II.3 2bs Phenomenologieal Equations
By equations (6) and (18), one can write

:q.x‘ﬂ AT eﬁwz(4ﬂ)z (19)
Iy =g 97 I T (4p), (20)
By eliminating 7 (4 4); fwrom the equations (19) md (20),
J“-A I, + W4T ()
L
whare )\:,E.(hx.hn)“_o, (22)

beamase (Jo) 4y 0 = (By = Brp) czup Tpr ™

L s Lﬂ-%ﬂ» . (23)

Equation (20) may be written in the form

Jnae L 4T =Ly, T(4y), . (24)
By the Onsager reciprosal relgtion,
To= Aot =L, T{4)), (25)

unkmnmm@mmmmo:mwm,mm

eonstants Lgmnmnumohamw(ea), (23), and the Onssger

relation.




IT.h Inderpretation of (44 ),

Figaoe § shovs an fsctiern &t 7 an & U~ p diagram. The point
cumwuiamwmummam-
mumuqus~ 4p). ”hmuﬂnm
sure of the vepor bubdble wiieh would exist im equilidrius with the
ligaid at a. Them,

P

ﬂs-ﬂl-/«(c-,ub-j vsdp.
Pgo
uv";‘é const between ., 8nd P,

(4 )y = Uy = Al g (Bgy = ) - (26)
From the figare |

Pgo " Pg = [ P = g+ 4 9)] - [rg-(ps*Ar)]-
ar (8) : 0

»,,-p;%—-%%&(%) :

Thaorefore,

2
(g = M), .a.a’vs[é;-_.%w% fg(%)]. (zn)

Eguation (87) is interesting in pointing cut the unstable nature
of equiliteium of vapor bubble vith its liquid. Suppose the radius
dmmhmmmnemcnmmmwm, then

ﬂsmmmm/ﬂr and more vapar eseopes into liguid redue-

ing R further. nthewmmtma:mmmmmao,
then/u1>/a8, and more liguid will evaporate miiking R still laxger.
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Cace mass starts to flow, there will be additional pressure jurp across
the boundary dus to the momsntum change in ercssing the boundary.
1.5 Deterwingtion of the Oomstante L, sod L.

The fivet 1law spplied to the "sontrol volume™ eomtaining region
X gives

. 3 = - . - )
(uw&ggﬁr- g™ &y -2p) 3, (28)

m,itmummnlumnt and p in region
x,munnumu('z+Az)ma(y+Ay). I ve assums
%u;mmamamhntumwmotw,
hnwuwanthamotmm,
2
(hn)“ "‘5%4? (29)
Then, (28) becomss
Tm O bl 03B 3, 47
c
w:qe)\:‘+€§ 3, 47 (30)
MQP-¥.

Comparing (21) vith (30), one gets

x,k-;; 3, (1)
In terms of crdinary tesperature 7, (30) becomes
Ja=Ad, p"n” (32)

From (25), vhen 4% = O, (Jn)dtuﬂ- uLm‘Z (“/’( )Z s OF

v
(Jh)ﬂt w0 " "m T‘ (Ps - ’@) (33)
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mmwwmm,(s’mmammmm
per plane wnls aves por unit time frem ome side ( [7, ) is

G= v, |oow ™

vbere X is molemnlar wight, X the gas constamt, and T the shsolwte
Sespersture of the gis. This equmtion is applied to the evaparation
or condensation of & iguid by noting timt the equiliberium of & liquid
snd its vaper mast be a dymamic ons. The liquid is not chengsd by the
presence of the vapor sbove it; thevefore, its rate of svaporation
should not be affected by is. Hovever, the vapor is also ecndensing,
mmmnmummppummumm
wvhich the two Jwst balanse. If it is assumed that only the frmetiem
o/ of the total gas moleculss which hit the liguid surfuse cendenses
on the liguid and (1 -{ ) rebounds into the gas, the gress rase of
evaporation of Mquid ( s ) mast be equal to the rwte of condemsation
( T4 ) to maintain the eguiliteim.

(s = 2y ‘;#.5 (33)

12 7 is assmed to de independent of presence of its vapor, the net
te of sondensation &t the Wibble vall e be written as

oW (T; -T;)
If =1 is essuned,

e vnl? [l (o - 3y (36)




R

w 1 -y, [ . (an
Fioally, ve have
J=(A-c ams, (%)

3, = bR f o [:,)lu - )%; (3 = Pgo) ] (39)

m’c"a"”[ﬁ ’ifz(ﬁi) ]

Agecrding %o (38), J, exists auly 1 J, doss.

1.6 Qomesrning P,
mmnhum“masrgmmmmunmmuu

@& the saturation pressure a0ress & plans imterfass &t the sa=s 7, but

thtaomm“(”’ Art. 2.2)

Py * Peat % [~ 7 -°“ ] (40)

mwmmmmw&muummw%ﬁ
mauurm(wi—;‘—’-’?— if B 18 in centimsters). Tms, for
tubbles in the order of 10™° em radius, the equilibrium pressure my
davinte considarably from the saturation pressure. However, p@—;; Pant
will be assumed hereafter.

Ths varistion of the sgturation pressurs with the tespsrature may
be expressed ast? Vo I)



pmsrgm(n-%;) (42)

m&,h,mcmmmmmmo@agimm.




0=

III. THE OOMPIETE SET OF EQUATIONS

In the preceding chapter, it was nacessary to ignore the bulk
motions in both regions I and IT and to assume infinite thermml cone
AQuctivities in oxdexr to apply Gidd's equation which is valid between
oquilibrium states only. Ia this chapter, the equations of wotion amd
energy will he stated for the incompressible, inviseid liquid with
mtuntmbiumehas/\,kpa‘,mcp. Tesperature gradient
vithin the hiddble will be assumed zero. It will be assumed that the
mmmwismrmmmnro,mmmat
infinity is p, -
IIX.1 Conservation of MNass

A mass balsnce at the phase boundary ylields (see Pigure 5)

Po [t = B) = F1 () - §) (1)

vhere u denotes the radisl velocity of particles in the spheriecsl
coardinste. Neglecting 5’8/ £, coupared vith unity, (1) becomss

dR/; - Fa 8
&= (n)p [2 '?g-‘;:]m (2)
The consarvation of mass for the incoxpressidle licuid glves

Be(nl),.a - ? u o, (3)
or by (2)
2
b g'é %% 1}3 u | *)

a

e i 2

\ﬁ



R ar
III.2 Conservation of Momentum
The momentunm egquation
-5-?1'\1-2—8-;% (6)
can be integrated between r = R and r =% using (5),

2
Py -(P5+4P)-P13i2%+gpl(%) (7)

which is the Rayleigh equation. Assuming Pgo Poat ?
4P = 2, = Pgp = Pg = Pagy?
where 4P is implicit in

, {—"" A
J’nnhxnafg ?75%?;‘ [-EEAT'F%;‘B_PT; (II‘39)
an
e g - (Fe3TRD) (8)
Paat = 2(Tg) {11 - 1)

Initial conditions are

R“Roi“t'o and T@RTO’

$=0at tao,

20°
(PSO Pcp )t-o Eo'; .

The dynamics of vapor region will be neglected, the vapor pressure will
be assumed uniform alvays, and (“g)n <« (u.]_)B also will be assumed.
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II1.3 Energy Equation
The energy equation applied to liquid region R<C r {0,

>r,  r >7
en s - (-;1’*53?) (9)

requires the initial condition and tvo boundary conditions.
Initial condition: !sroenry!hm
Boundary conditions: Ty = T, et r =

2T
Wi sl = 3 (10}
Jg=dp (A =g 47) (zz - 38)

AT = (% - Tdpp
In the vapor region, rgnnbeuamdmm.

The enexgy balance applied to the eontrol volume containing region
M without neglecting the kinetiec anergles is

.T -{pl p)!i?f avanﬁatﬁ' r'hl‘i' -(h + ﬁg)]- {11)

Dividing both sides by LT RS and using (:98-1:)”2"',

o

‘q”("g"”:)‘n (12)
wherehosh-l--léua.

In previous chapters, the kinstic energies have been neglected
conpared with the enthalpies and the equation (28) of Chapter II.

resulted.
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IIX.A  The Fime) Set of Squations

Expanding (8),
-3, = ygun33§+57t33 -Eﬁ (13)
If the vapor is sssumd to be perfect .,
P
- (1)
Ps R{;

osn be used to further expand (13). Cowbining (10), (IX - 38), and
(13) and assuming

P‘§>>“§'?£“ I (15)
e gots
(oD, - P B g4 (8)

If 47 = 0 in (16), this is the familiar boundary eonditiom which has
been trediticoally used for solving the energy equation. With the
asswmption (15), (IT - 39) becomes

ggs ’ﬁ?[i“‘fa(fm‘rg)] (a7)
27TRE
qr-é'pngp -a-—ﬁnf )\(;—:'5-1) (18)

The final version of the set of eguations, then, is as follows:
The snergy equation

> > > |
Rt Tk - (9)

vith initial condition
'21(3.', O) = w 7




and boundary conditions
rz(‘”t '5)“‘10
-2
(3":3‘):;-3 "2&5%[)\ “’y"m"’g’] .
The momentam egustion
2 2
P, ° [’g'£§'+%9s(%)] = fz“%*éel(g) (M

- a0
ﬁ%ﬁ.&ﬁoopw)

withR=R, 8t 6 =0, R ,

%-owsae.

P " 5g R 2 (14}

’875@!
Paat (!8) "38"%% '—_ﬂ"—’),g A (;-:; 1)

Tus, mmmmrl, ?s,n,anapsmmmm&wn

(18)

from the foxr equations (9), (7). (1), end (38).
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IV. CONCLUSICHS AND SUTIGESTIORS
A pair of differentisl equations for the dubble radius R(t) with

improved boundary conditions taking into consideration the irreversi-

ble capled flow effects at the phase boundary for & vapor bubble in
an infinite ses of cma-component, inviseid liquid was developed. The
vapor wes assumed to be uniform in tenperature. Tha liquid ues assumed
mmwmiea,smhumw(ﬂ),mmmﬂw

(x), specific heet (C,), surface temsion (g°), and latent heat of vaporiza~

tion (A). mmmm\(—_— is in the arder of 5 x 10°

('%) (3p) &t bolling unfer stocepheric conditlons, the inprovement

mde bers vill de significant st high mass flux densities, such as at

the finel stage of bubble eollapse.
The following sugzsations are made:

3. Attenpt an amalytieal solution.

2. Cbtain mmerionl sclutiom using the ssme parameters 88 in Figs. 13,
and conpare the present selution with the previocus ones.

3. Since there is no avallable duta on faat-collapsing vapor bubbles,
davise an experimental sel-up so that the collapse rgte at smill
-g-; my be measured. If no practieal way can be found for such an

axperinmont, the coupled flow effect should de checksd across a

flat interface by, for exampls, quickly pulling a piston in s

cylinder £illed with liquid and simltaneously measuring Jn and

47 across the interdaca.



9\:~D§$amw4a¢mnunwv”n9\
]
>

therem). diffusivity
specific beat of lignid
enthalyy per unit mess
thermul. conductivity
wass

pressure

radial coordinmte with origin st the center of bubdble

entropy per unit mass
tine

redial velooity of particles
spacific volmw
radine of the budble

total entyepy

texpersture
wiversal gas congstant
latent hexxt of weporization
denaity

chanmionl potential
surface tansion

at r=R
inside the bubble
inside the liquid

85 r = o0

saturation property carresponding to 7
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